Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail.
نویسندگان
چکیده
Biosynthesis of aromatic amino acids in plants, many bacteria, and microbes relies on the enzyme 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase, a prime target for drugs and herbicides. We have identified the interaction of EPSP synthase with one of its two substrates (shikimate 3-phosphate) and with the widely used herbicide glyphosate by x-ray crystallography. The two-domain enzyme closes on ligand binding, thereby forming the active site in the interdomain cleft. Glyphosate appears to occupy the binding site of the second substrate of EPSP synthase (phosphoenol pyruvate), mimicking an intermediate state of the ternary enzyme.substrates complex. The elucidation of the active site of EPSP synthase and especially of the binding pattern of glyphosate provides a valuable roadmap for engineering new herbicides and herbicide-resistant crops, as well as new antibiotic and antiparasitic drugs.
منابع مشابه
Site-Directed Mutagenesis, Expression and Biological Activity of E. coli 5-Enolpyruvylshikimate 3-Phosphate Synthase Gene
Site-directed mutagenesis (SDM) as a powerful technique was used to change two important and conserved amino acids in 5-enolpyruvylshikimate 3- phosphate synthase (EPSPS) gene of E. coli. The mutations changed glycine 96 to alanine and alanine 183 to threonine. These two amino acids are very important for intraction of the wide spectrum herbicide, glyphosate, to EPSP synthase enzymes. By design...
متن کاملMolecular basis for the herbicide resistance of Roundup Ready crops.
The engineering of transgenic crops resistant to the broad-spectrum herbicide glyphosate has greatly improved agricultural efficiency worldwide. Glyphosate-based herbicides, such as Roundup, target the shikimate pathway enzyme 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase, the functionality of which is absolutely required for the survival of plants. Roundup Ready plants carry the gene codi...
متن کاملA Review on Production of Glyphosate-Resistant Plants with Emphasis on Molecular Methods
Herbicide-resistant plants are one of the most common plants that comprise the majority of the total population of transgenic plants. Glyphosate is an herbicide that controls a wide range of plant species. Position of these herbicides reaction is 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) that only exists in plants and some bacteria. This herbicide was known to be suitable and safe for...
متن کامل5-Enolpyruvylshikimate-3-phosphate synthase from Staphylococcus aureus is insensitive to glyphosate.
The enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) catalyzes the penultimate step of the shikimate pathway, and is the target of the broad-spectrum herbicide glyphosate. Kinetic analysis of the cloned EPSPS from Staphylococcus aureus revealed that this enzyme exerts a high tolerance to glyphosate, while maintaining a high affinity for its substrate phosphoenolpyruvate. Enzymatic act...
متن کاملA Novel 5-Enolpyruvylshikimate-3-Phosphate Synthase Shows High Glyphosate Tolerance in Escherichia coli and Tobacco Plants
A key enzyme in the shikimate pathway, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is the primary target of the broad-spectrum herbicide glyphosate. Identification of new aroA genes coding for EPSPS with a high level of glyphosate tolerance is essential for the development of glyphosate-tolerant crops. In the present study, the glyphosate tolerance of five bacterial aroA genes was evalu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 4 شماره
صفحات -
تاریخ انتشار 2001